DIFFERENTIATION

1 Differentiate with respect to x

$$\mathbf{a} \cos x$$

b
$$5 \sin x$$

$$\mathbf{c} \cos 3x$$

d
$$\sin \frac{1}{4}x$$

e
$$\sin(x+1)$$

$$\mathbf{f} = \cos(3x - 2)$$

g
$$4 \sin{(\frac{\pi}{3} - x)}$$

e
$$\sin(x+1)$$
 f $\cos(3x-2)$ **g** $4\sin(\frac{\pi}{3}-x)$ **h** $\cos(\frac{1}{2}x+\frac{\pi}{6})$

$$i \sin^2 x$$

i
$$2\cos^3 x$$

k
$$\cos^2(x-1)$$
 l $\sin^4 2x$

$$1 \sin^4 2x$$

2 Use the derivatives of $\sin x$ and $\cos x$ to show that

$$\mathbf{a} \quad \frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x$$

b
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\mathbf{c} \quad \frac{\mathrm{d}}{\mathrm{d}x}(\csc x) = -\csc x \cot x$$

$$\mathbf{d} \quad \frac{\mathrm{d}}{\mathrm{d}x}(\cot x) = -\csc^2 x$$

Differentiate with respect to t3

$$\mathbf{a} \cot 2t$$

b
$$\sec(t+2)$$

c
$$\tan (4t - 3)$$

d cosec
$$3t$$

$$e \tan^2 t$$

f
$$3 \operatorname{cosec} (t + \frac{\pi}{6})$$
 g $\cot^3 t$

$$\mathbf{g} \cot^3 \mathbf{g}$$

h
$$4 \sec \frac{1}{2} t$$

i
$$\cot (2t - 3)$$

$$\mathbf{j} \quad \sec^2 2t$$

$$\mathbf{k} = \frac{1}{2} \tan (\pi - 4t)$$

k
$$\frac{1}{2} \tan (\pi - 4t)$$
 l $\csc^2 (3t + 1)$

4 Differentiate with respect to x

$$\mathbf{a} \quad \ln (\sin x)$$

b
$$6e^{\tan x}$$

$$\mathbf{c} = \sqrt{\cos 2x}$$

d
$$e^{\sin 3x}$$

e
$$2 \cot x^2$$

$$\mathbf{f} = \sqrt{\sec x}$$

$$\mathbf{g}$$
 $3e^{-\csc 2x}$

h
$$\ln (\tan 4x)$$

5 Find the coordinates of any stationary points on each curve in the interval $0 \le x \le 2\pi$.

a
$$y = x + 2 \sin x$$

b
$$y = 2 \sec x - \tan x$$

$$\mathbf{c}$$
 $y = \sin x + \cos 2x$

6 Find an equation for the tangent to each curve at the point on the curve with the given *x*-coordinate.

a
$$y = 1 + \sin 2x$$
,

$$x = 0$$

b
$$y = \cos x$$
,

$$x = \frac{1}{2}$$

$$\mathbf{c}$$
 $y = \tan 3x$,

$$x = \frac{\pi}{4}$$

$$x = \frac{\pi}{4}$$
 d $y = \csc x - 2\sin x$, $x = \frac{\pi}{6}$

$$x = \frac{\pi}{6}$$

7 Differentiate with respect to x

$$\mathbf{a} \quad x \sin x$$

$$\mathbf{b} \quad \frac{\cos 2x}{x}$$

$$\mathbf{c} = e^x \cos x$$

$$\mathbf{d} \sin x \cos x$$

e
$$x^2 \csc x$$
 f $\sec x \tan x$

$$\mathbf{f} = \sec x \tan x$$

$$\mathbf{g} = \frac{x}{\tan x}$$

$$\mathbf{h} \quad \frac{\sin 2x}{\mathrm{e}^{3x}}$$

i
$$\cos^2 x \cot x$$
 j $\frac{\sec 2x}{x^2}$

$$\mathbf{j} = \frac{\sec 2x}{x^2}$$

$$\mathbf{k} x \tan^2 4x$$

$$1 \frac{\sin x}{\cos 2x}$$

8 Find the value of f'(x) at the value of x indicated in each case.

a
$$f(x) = \sin 3x \cos 5x$$
, $x = \frac{\pi}{4}$

$$x = \frac{\pi}{4}$$

b
$$f(x) = \tan 2x \sin x$$
, $x = \frac{\pi}{3}$

$$x = \frac{\pi}{2}$$

c
$$f(x) = \frac{\ln(2\cos x)}{\sin x}$$
, $x = \frac{\pi}{3}$ **d** $f(x) = \sin^2 x \cos^3 x$, $x = \frac{\pi}{6}$

$$x = \frac{\pi}{3}$$

$$\mathbf{d} \quad \mathbf{f}(x) = \sin^2 x \cos^3 x$$

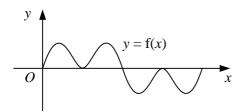
$$x = \frac{\pi}{6}$$

PMT

- 9 Find an equation for the normal to the curve $y = 3 + x \cos 2x$ at the point where it crosses the y-axis.
- 10 A curve has the equation $y = \frac{2 + \sin x}{1 \sin x}$, $0 \le x \le 2\pi$, $x \ne \frac{\pi}{2}$.
 - **a** Find and simplify an expression for $\frac{dy}{dx}$.
 - **b** Find the coordinates of the turning point of the curve.
 - c Show that the tangent to the curve at the point P, with x-coordinate $\frac{\pi}{6}$, has equation

$$y = 6\sqrt{3}x + 5 - \sqrt{3}\pi$$
.

- 11 A curve has the equation $y = e^{-x} \sin x$.
 - **a** Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
 - **b** Find the exact coordinates of the stationary points of the curve in the interval $-\pi \le x \le \pi$ and determine their nature.
- 12 The curve C has the equation $y = x \sec x$.
 - **a** Show that the *x*-coordinate of any stationary point of *C* must satisfy the equation
 - $1 + x \tan x = 0$.
 - **b** By sketching two suitable graphs on the same set of axes, deduce the number of stationary points C has in the interval $0 \le x \le 2\pi$.
- 13



The diagram shows the curve y = f(x) in the interval $0 \le x \le 2\pi$, where

$$f(x) \equiv \cos x \sin 2x$$
.

- **a** Show that $f'(x) = 2 \cos x (1 3 \sin^2 x)$.
- **b** Find the x-coordinates of the stationary points of the curve in the interval $0 \le x \le 2\pi$.
- **c** Show that the maximum value of f(x) in the interval $0 \le x \le 2\pi$ is $\frac{4}{9}\sqrt{3}$.
- **d** Explain why this is the maximum value of f(x) for all real values of x.
- 14 A curve has the equation $y = \csc(x \frac{\pi}{6})$ and crosses the y-axis at the point P.
 - **a** Find an equation for the normal to the curve at *P*.

The point Q on the curve has x-coordinate $\frac{\pi}{3}$.

b Find an equation for the tangent to the curve at Q.

The normal to the curve at P and the tangent to the curve at Q intersect at the point R.

c Show that the x-coordinate of R is given by $\frac{8\sqrt{3} + 4\pi}{13}$.